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Iteration in Mathematics

There are a number of big ideas in mathematics that form unifying themes across
different branches of mathematics, including functions, transformations, proof, and
data. Iteration is also such a topic, with important applications throughout the
curriculum. Understanding iteration, the way in which systematically repeated simple
operations can build complex structures, can shed light on many important concepts in
arithmetic, algebra, geometry, fractals, calculus, and mathematical modeling.

Iteration is also at the heart of the distinction between discrete and continuous
processes. This distinction begins with the concept of number and comes into play
throughout mathematics. Even the process of graphing a continuous function (whether
it’s done by hand, by graphing calculator, or by Sketchpad) is accomplished in practice
by plotting a discrete set of points and interpolating between data points. This interplay
is fundamental to mathematics: The definition of continuity itself depends on the
concept of a limit, involving ever-smaller discrete intervals.

Because iteration allows us to move from the discrete toward the continuous, it is a
powerful tool for elucidating  many mathematical topics, ranging from the counting
numbers to calculus.

Iteration and Technology

Because iteration often involves large numbers of operations which would be difficult
and time-consuming to carry out by hand, it’s particularly suited to the use of
technology. The value of graphing calculators lies in their ability to perform the
iterations required to graph and manipulate functions. Similarly, Sketchpad makes it
possible, by means of iteration, to investigate mathematical phenomena that would be
computationally intractable without technology.

Iteration in Precalculus

In addition to the many topics where iteration is an implicit part of the mathematics
studied in precalculus, there are a number in which iteration plays a more explicit role.
We will look at a few of those today, using prepared student activities and sketches.

Availability of Materials

The activities and sketches used in this talk are available on the web at
http://www.kcptech.com/sketchpad/scott/nctm2005.



Compound Interest

In this activity students use iterated calculations Students use iterated calculations to
compute and plot the value of a compound interest investment. This is connected to the
constant e and the general formula for continuous compounding.

A Sequence Approach to Logs

In this activity students graph geometric sequences against arithmetic sequences to
obtain good approximations of log curves.

The Logistic Function

In this activity students build a Sketchpad model of a population for which the growth
is restrained by some factor. In the process, students explore the sensitivity of the long-
term behavior to the initial size of the population and to the parameters that determine
the growth.

A Geometric Approach to ei

Students use a limit definition of e, along with multiplication on the complex plane, to
find the value of ei .

Generating Arithmetic / Geometric Sequences Numerically

Students develop an understanding of arithmetic and geometric sequences by building
and modifying them with Sketchpad.

Area Models of Geometric Series

Students use dissections of a square to represent geometric series, and to investigate
sums of these series.

The Taylor Series

In this activity students explore how adding terms to a Taylor series approximation
increases the accuracy of the approximation.

The Sierpinski Gasket

In this activity students create various fractal designs (including the Sierpinski triangle
and Mira, Julia, and Mandelbrot fractals) as strange attractors.

Barnsley’s Fern

Students plot points using four pairs of iterated functions. By choosing randomly
among the function pairs, they create a fractal Barnsley’s Fern.



It’s impossible to pinpoint the moment of discovery of the constant e. Several

branches of mathematics converged on the number from different directions.

One of these was the applied mathematics of finance.

A SIMPLISTIC INVESTMENT
When an investment is compounded, the interest is paid periodically, and each time

the interest itself is invested so that it can start accumulating interest as well. The more

frequently the interest is paid and invested, the greater the advantage for the investor.

Consider a very simple investment, one dollar at 100% interest for one year. Watch

what happens when it is compounded.

1. Create a new sketch and make three parameters:

t � 0 (the time in years)

P � 1 (the principal)

k � 2 (the number of compounding periods per year)

2. The length of each time period will be 1/k. Create a calculation to find the

beginning of the next time period, by adding the length of one period to the

original time t.

3. The interest for the first time period is P/k, so the value of the investment at the

end of this period will be P � P/k. Express this value in factored form, and create

a calculation for it. Set the precision of this calculation to hundred thousandths.

4. Plot these two points and connect them with a 

line segment:

(t, P) [(t � 1/k), P � (1 � 1/k)]

Q1 What do these points represent in terms of

the investment?

5. Hide the two points, leaving only the segment to show the growth.

The calculations you just completed follow the investment for only one of the k

compounding periods. You must repeat the calculations one more time to get to the

end of the year.

6. Calculate (k � 1). Label the calculation depth.

2

P ⋅ 1 +( ) = 1.50000 

t + 1
k

 = 0.50 

t = 0.00
P = 1.00

1
k
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Compound Interest

Depending on where 
you live, this interest 
rate may be illegal (and 
is certainly unlikely).

To set the precision,
select the calculation 
and choose Edit
PropertiesValue.



Compound Interest
(continued)

7. Select in order t, P, and depth. Press the Shift key 

and choose TransformIterate To Depth. Map 

the two parameters to their respective calculations 

as shown in the table at right.

Q2 Edit parameter k to change the number of compounding 

periods. The bottom row of the table shows the value of

the investment at the end of the year. What value must

you use for k to compound the interest quarterly? What 

is the value of the investment after one year if it is

compounded quarterly? Monthly? Weekly? Daily?

Q3 Increasing the compounding frequency always results in more money for the

investor, but, as you can see, there seems to be a limit. What appears to be the

limit of the value of the investment at the end of the year?

The value of this limit is known as the number e. Mathematically, you could express

the limit this way:

lim
k→�

�1 � �
1
k��

k

� e

A MORE REALISTIC INVESTMENT
As k grows, the investment modeled in the preceding example approaches what is

called continuous compounding. In practice, daily compounding comes so close that

the difference is negligible. Now, make some changes to your sketch and model a

more realistic investment. This time, it will be $100 at 8.5% over a term of 5 years.

8. Create these new parameters:

r � 0.085 (8.5% interest, displayed to the thousandth)

term � 5 (investment term in years)

9. Edit parameter P to make the starting principal $100 instead of $1. Set k to 12

for monthly compounding.

10. The interest for the first time period is (P � r)/k, so the value after the first time

period is P � (P � r)/k. Express this in factored form, and edit the existing

calculation to match.

2

k = 4
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Pre-image First Image

t t � 1/k

P P � (1 � 1/k)

You may need to move
the table so that you can
see the bottom row.

Is the graph off the
screen? Use GraphGrid
Form to change the grid
form to Rectangular and
then rescale the axes.



Compound Interest
(continued)

11. The total number of periods should now be the number of periods in a year

multiplied by the number of years. Edit the depth calculation to achieve this.

Remember to subtract one, because you’ve already calculated the result for 

one period.

Q4 What is the investment worth at the end of the term if the interest is

compounded annually? Daily?

The function being modeled by this iterated calculation is the compound interest

formula: A(t) � P(1 � r/k)kt. The iteration involves repeatedly multiplying the

previous result by the same factor, (1 � r/k). This is an exponential function, and

you write it using any base you choose. If you use e as the base, you could write it 

as a � ebt.

P(1 � r/k)kt � aebt

Clearly, the coefficient a must equal P, but determining b is another matter.

Q5 Why must a equal P?

12. Create new parameter b. Use EditPropertiesValue to set its precision to

thousandths, and use EditPropertiesParameter to set the keyboard

adjustments to 0.001.

13. Define and plot the function A(x) � Pebx.

Q6 Set k to a very high number so that the iteration

approximates continuous compounding. Adjust the

value of parameter b so that the function graph aligns

with the iterated point plot. What function models

the current value of $100 compounded continuously

at 8.5%?

Q7 What is the general function for the value of an investment of principal P, at

interest rate r, compounded continuously for x years? Test your answer by

changing the equation for A(x) in the sketch. Make sure the graph of A(x) always

matches the iteration for different values of P and r.

200

100

5

b = 0.108

r = 0.085
k = 365

P = 100.00

A(x) = P ⋅ eb⋅x
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After setting the 
keyboard adjustment,
you can select the
parameter and press 
the + or – key on the
keyboard to change the
value of the parameter 
by the specified amount.



Scientists often use mathematical functions to understand natural processes. For

instance, biologists and environmentalists often use mathematics to study how

animal or plant populations grow larger or become smaller.

In this example, you will use Sketchpad to model a population of animals that

reproduce at a certain rate, but whose numbers are limited by the available food.

DEVELOP THE EQUATION
Your mathematical model of population growth will use a function to calculate the

number of animals in each generation. The input value to this function is the number

of animals in the current generation, and the output value is the number in the next

generation. The function includes two factors: a growth factor and a limiting factor.

Q1 For the growth factor, assume that on average each individual in one generation

produces k individuals in the next generation. The value of k takes into account

normal births and deaths, but not the effect of limited resources. Considering

only normal growth, if the population is p in one generation, write a formula, in

terms of p and k, for the population in the next generation.

If the population depends only on the growth factor, it will increase exponentially.

But as the population becomes larger, food becomes scarce and population growth 

is limited by the lack of food. Use n to stand for the population at which the current

generation doesn’t have enough food to survive, and dies without producing offspring.

Taking this value n into account, a reasonable function f(p) for determining the

population in the next generation is f(p) � kp(n � p)/n. The term kp is the growth

factor, and the term (n � p)/n is the limiting factor.

Q2 When p � n, what is the value of the limiting factor? How big will the next

generation be?

Q3 When p is very small compared to n, what is the approximate value of the

limiting factor? How does the limiting factor affect f(p)?

Q4 If n � 1,000,000 and k � 1.5, find the size of the next generation for each of the

following current populations: p � 5,000, p � 50,000, and p � 500,000.

You don’t have to measure the population by counting individuals; you can measure

it in any units you want. The mathematics will be simplest if you measure the

population as a fraction of n. So, if the population is 500,000 and n � 1,000,000,

you can define x � p/n and record the population as x � 0.5.
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The Logistic Function

For instance, if the
population doubles in
each generation, the
value of k is 2.



The Logistic Function
(continued)

Q5 If the population is measured in this way, how should you rewrite the limiting

factor? Write a new formula g(x) using this way of measuring population.

To construct a Sketchpad model, you will create an initial size for the population,

evaluate your function, and use the result as the size of the next generation. You will

apply the function repeatedly to observe the behavior of the population over time.

FIRST GENERATION
1. Start with a new sketch, and choose GraphPlot New Function. Plot the

function g(x) � k � x · (1 � x).

2. Choose GraphPlot Points, and plot the point (1, 1). Construct a diagonal

segment through the origin and this plotted point. This diagonal segment

represents y � x.

3. Move the origin near the bottom left of your window, and scale the axes so that

the point (1, 0) is near the right edge of your sketch window.

4. Construct point P on the x-axis between 0 and 1, and measure its abscissa. This

point represents the size of the initial population.

5. Calculate g�xP�—the size of the next generation—and plot the point �xP, g�xP��.

6. Construct a segment connecting point P and the plotted point.

The calculated value of g�xP� is the output (y-value) of the function in the first

generation, but you must use it as the input (x-value) for the function in the next

generation. The next step provides a geometric way of turning the existing y-value

into an x-value.

7. Construct a line through �xP, g�xP��
parallel to the x-axis, and construct the

intersection Q of this parallel with the

diagonal line. Hide the parallel line, and

construct a segment connecting the

plotted point and Q.

Q6 Why is xQ equal to the value of the

function at xP? In other words, why is

xQ � g�xP� true?

1

0.5

1

f xP( )  = 0.22

xP = 0.68

f x( ) = kx(1− x)

k = 1.00

Q

P
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To enter the parameter k,
choose New Parameter
from the Calculator’s
Value pop-up.

To scale the axes, drag
the unit point, or drag
one of the numeric labels
on the axes.

The x-value of the
intersection point 
is the input for the 
next generation.



The Logistic Function
(continued)

This completes the construction for a single generation, because the x-value of point

Q is g�xP�, the population at the start of the second generation. In the next step, you

will iterate this process, by using the same construction to find the population at the

start of the third generation, and then the fourth generation, and so on.

NEXT GENERATIONS
8. Select point P and choose TransformIterate. In the Iterate dialog box, match

point P to point Q by clicking on point Q in the sketch. In the Structure pop-up,

make sure that Tabulate Iterated Values is checked. Click the iterate button in the

dialog box to show the first three steps of the iteration.

9. Increase the number of iterations to 20 by pressing the � key on the keyboard.

In the questions that follow, you are asked to observe the long-term behavior of the

population under various circumstances. You can observe the long-term behavior of

the population by looking at the iterated segments or by observing the values near

the bottom of the table. Be sure to look at the long-term behavior, ignoring the first

few generations.

Q7 Move point P to about 0.5. Does the population ever stabilize? If so, at what

value does it stabilize?

Q8 Drag point P back and forth between 0 and 1, and observe the behavior. Does

the long-term behavior of the population depend on the initial position of P? If

so, in what way does it depend on P? If not, explain why the long-term behavior

is the same no matter where P is.

Q9 Change the value of k to 2.5. What’s the long-term behavior of the population

now? Does it depend on the initial position of point P?

Q10 Change the value of k to 3.1. What’s the long-term behavior of the population

now? Explain this behavior. Does it depend on the initial position of point P?

10. Change the properties of parameter k so that the keyboard adjustment is 0.01.

Q11 Select parameter k and use the � key on your keyboard to gradually increase the

value of k from 2.5 to 4.0. Record your observations. For particular values of k,

drag P to look at the sensitivity of the long-term population to the initial

population. Also observe the stability of the long-term population as the value 

of k is changed slightly.
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You can also use
EditProperties
Iteration to change the
number of iterations.

You may need to 
increase the number 
of iterations to answer
this question.



The Logistic Function
(continued)

EXPLORE MORE
The function used in this activity produces results at discrete intervals of time,

generation by generation. This discrete form is sometimes called a logistic map. You

can also express the logistic function continuously, in a form that gives the size of

the population as a function of time. Here’s a form that uses k in a similar way:

p(t) ��
k � c

k
�
�
e�

1
(k�1)t�

Plot this function, using parameters for c and k. Experiment with different values of

the parameters, and observe how the behavior of this form of the logistic function

relates to the behavior of the Sketchpad model you have built. What similarities do

you observe? How can you account for the differences?
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To actually derive one 
of these forms of the
logistic equation from the
other requires calculus.
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One of the most beautiful—and mysterious—mathematical discoveries has to do

with the value of ei�. What does it mean to raise the number e to an imaginary power?

In this activity, you’ll explore ei� through a geometric approach.

GETTING STARTED
A good place to begin your investigation is with the mathematical constant e.

Consider these calculations:

�1 � �1
1
0��

10

, �1 � �1
1
00��

100

, �1 � �1,0
1
00��

1,000

, �1 � �10,
1
000��

10,000

, . . .

1. Open a new sketch. Choose EditPreferences from the Edit menu. Set the

Scalars precision to hundred-thousandths.

2. Choose MeasureCalculate. Calculate, one at a time, the values of the four

expressions above.

Q1 What do you notice about your four calculations?

3. Calculate four more expressions that continue the sequence above.

Q2 Based on your calculations, approximate the value of �1 � �n
1

��n
to several decimal

places as n grows ever larger.

The mathematical constant e is defined as the limiting value of �1 � �n
1

��n
as n

approaches infinity. Raising e to a power, like e2 or e 3, involves a similar definition:

e x � the limiting value of �1 � �n
x

��
n

as n approaches infinity

Q3 Use the definition of e x and a large n to approximate the value of e 3.

SKETCH AND INVESTIGATE
Now that you know how to approximate e x when x is a real number, you’re ready to

consider ei�. Raising e to an imaginary power certainly seems strange, but let’s use

our definition of e x with x � i� and see what happens:

ei� � the limiting value of �1 � �
i
n
�
��

n

as n approaches infinity

As before, we can get a sense of how this expression behaves by starting with a small

value of n. When n � 10, we must evaluate �1 � �1
i�

0��
10

.

A Geometric Approach to e i�
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A Geometric Approach to ei�

(continued)

4. Open the sketch eipi.gsp in the 7 Polar Coords and Complex Nos folder. The

axes represent the complex plane with real numbers on the horizontal axis and

imaginary numbers on the vertical axis. Point A is at (1, 0) and represents the

value 1. Point B is at �1, �1
�
0�� and represents the value 1 � �1

i�
0�.

Q4 The sketch provides two pieces of information about right triangle OAB: the

measure of ∠AOB and the length of OB. Describe geometrically what it means

to multiply the complex number 1 � �1
i�

0� by itself. Describe geometrically what 

it means to raise 1 � �1
i�

0� to the tenth power.

Sketchpad makes the process you described in Q4 simple to carry out.

5. Select point A and n � 1, and hold down the Shift key. Choose

TransformIterate to Depth.

6. Click on point B to map point A to point B. Click Iterate to confirm your

mappings. The iterated triangles appear, all of which are similar to �OAB.

Q5 Identify the locations of �1 � �1
i�

0��
2
, �1 � �1

i�
0��

3
, . . . , �1 � �1

i�
0��

9
, and �1 � �1

i�
0��

10
.

7. Select the iterated point image and 

choose TransformTerminal Point.
Label the terminal point P.

8. With point P selected, choose

MeasureCoordinates.

Q6 What is the value of �1 � �1
i�

0��
10

?

9. Drag slider point n to the right to increase the value of n.

Q7 What do you notice about the value of �1 � �
i
n
�
��n

as n grows larger?

EXPLORE MORE
You can generalize the method of finding ei� to compute e raised to the i� power,

where � is any number.

10. Open page 2 of eipi.gsp.

This sketch computes e raised to the power �
i
k
�
� for any value of k.

11. Double-click the parameter k and change its value to 2.

Q8 Use the iteration process from page 1 of the sketch to approximate the value 

of ei�/2.

Q9 Approximate the imaginary powers of e for values of k such as 3 and 4.

P
B

O
A

This is a good time to
review the activity
Multiplication of 
Complex Numbers.

The third page of the
sketch provides an
intuitive explanation of
what you’re observing.
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A Geometric Approach to ei�

(continued)

Q10 For each of your approximations, what do you notice about its distance from 

the origin?

Q11 When k � 2, what angle does the point representing ei�/2 make with the x-axis?

Answer this question for k � 3 and for k � 4.

Q12 The eighteenth-century mathematician Leonard Euler developed the identity

ei� � cos� � i sin� as a way to compute the value of e raised to any imaginary

power. Explain how this identity makes sense based on your answers to Q10 

and Q11.

Q13 Substitute � � � into the identity in Q12. What do you get?



In this activity, you’ll build and explore arithmetic and geometric sequences by using

Sketchpad’s iteration feature.

ARITHMETIC SEQUENCES
Open Sequences.gsp in the 8 Sequences and Series folder. This sketch includes a

start value of 2 and a difference of 3. With these two values, you can generate an

arithmetic sequence.

Q1 Look at the number line on the sketch. What arithmetic sequence is shown? 

How do the numbers in the sequence relate to the start and difference values?

Now you’ll create a table of values that corresponds to the arithmetic sequence on

the number line.

1. Choose MeasureCalculate to display the Calculator. Click on start in the

sketch, the � sign on the keypad, and difference in the sketch to compute 

start � difference.

2. Select start, and choose TransformIterate. Map start to start � difference by

clicking on start � difference. Then click Iterate to confirm the mapping.

3. A table appears with the 2nd through 5th terms in your arithmetic sequence.

To increase the number of terms in your sequence, select the table and press the

� key on your keyboard several times. You can decrease the number of terms by

pressing the � key.

Q2 Your sequence does not include the term 24. Find two ways to change the

sequence so that it includes 24.

Q3 Below are several arithmetic sequences. For each one, find the start and difference

values that generate them.

a. 3, 6, 9, 12, 15, . . .

b. �10, �14, �18, �22, �26, . . .

c. 1, 1, 1, 1, 1, . . .

d. 0.5, 0.75. 1.0, 1.25, 1.5, . . .

Q4 Suppose the start value of your sequence is 4 and the difference is 6. Will there be

a term in your sequence between 2000 and 2010?

5 10 150
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Generating Arithmetic and Geometric Sequences Numerically

The beginning value for
an iteration is often
called the seed, or 
the pre-image, of 
the iteration.

To change the value of a
parameter, double-click 
it with the Arrow tool 
and enter a new number.

Answer this question
without creating the
sequence.



Generating Arithmetic and Geometric Sequences Numerically
(continued)

GEOMETRIC SEQUENCES
Page 2 of Sequences.gsp includes a start value of 1 and a ratio of 3. With these two

values, you can generate a geometric sequence.

4. Using the directions for creating an arithmetic sequence as a guide, create a table

that corresponds to the geometric sequence shown on the number line.

Q5 Your sequence does not include the term 24. Describe two ways to change the

sequence so that it includes 24.

Q6 Below are several geometric sequences. For each one, find the start and ratio

values that generate them.

a. 2, 8, 32, 128, 512, . . .

b. 32, �16, 8, �4, 2, . . .

c. 1, 1, 1, 1, 1, . . .

d. 1, �1, 1, �1, 1, . . .

Q7 Change your sequence so that start � 1 and ratio � 3. How many copies of

the 2nd arc (between 3 and 9) can fit into the 3rd arc? How many copies of the

3rd arc can fit into the 4th arc? Does this pattern continue?

EXPLORE MORE

Q8 The Fibonacci sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . , where each term is

the sum of the preceding two terms. Use the seed values on page 3 of the sketch

to generate an iterated table of Fibonacci values.
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Hint: Your iteration
requires using two 
pre-image parameters.



You can compute the value of a polynomial function directly and easily for any

particular value of x using multiplication and addition. But values of other

functions, such as the sine function, are much more difficult to compute.

In this activity, you’ll approximate the sine 

function using a series called a Taylor series and

observe the behavior of the partial sums when

the series is evaluated to various depths. The

Taylor series approximation for sin(x) is

f(x) � �
x
1

1

!� � �
x
3!

3
� � �

x
5!

5
� � �

x
7!

7
� � �

x
9!

9
� � �1

x
1

11

!� � . . .

SKETCH AND INVESTIGATE

1. In a new sketch, create a square grid, construct point A on the x-axis, and

measure the point’s x-value. Label the x-value x.

2. Create four parameters to use in iterating the series. Label them i, num, den,

and sum.

Q1 Parameter i represents the index for the terms, following the sequence 1, 3, 5, . . . .

What rule can you apply to one element of this sequence to calculate the next?

Q2 Parameter num represents the numerator, taking on values x, �x 3, x 5, �x 7,

and so forth. What is the rule to calculate a value of this sequence from the

previous value?

Q3 Parameter den represents the denominator, taking on values 1!, 3!, 5!, and so

forth. What’s the rule to calculate the next value of this sequence? (Express 

your answer in terms of the previous values of den and i.)

Q4 Parameter sum represents the sum of all the terms from the first term through

the ith term. What value should you use as the initial value of the sum, before

adding the very first term? What’s the rule to calculate one sum from the

previous sum?

3. All but one of these parameters have constant initial values that you can assign

now. (The initial value for the other isn’t constant, but depends on the value of

x.) Assign appropriate initial values to the parameters that don’t depend on x.

Assign an initial value to the other parameter as though the value of x were 2.

Q5 What initial values did you assign to the parameters?
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Taylor Series

You can learn how to
derive the Taylor series
when you study calculus.

Parameters must be
independent values in
order to be iterated, so
you can’t set the initial
values of the parameter
that depends on x until
after you construct the
iteration.


