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The activity uses a GSP sketch and physical hinged pairs of triangles (constructed, for example, from Polydron) to explore the congruence of triangles through an active use of transformations and the associated reasoning.  One goal is to place a parallelogram into the hierarchy of quadrilaterals, thereby building up one piece of the classification of quadrilaterals via symmetries, as outlined in the accompanying paper.  The deeper goal is to develop transformational reasoning as the core of geometry: its reasoning, its application, and its definitions.   

We begin with a standard ‘congruence’ type problem about two angles in a quadrilateral.  We are given that in a quadrilateral ABCD, there are two pairs of sides of equal length: |AB|=|CD| and |BC|=|DA|.  We are asked to make an inference about angles <ABC and <CDA.  The uniform response is to draw the diagonal AC and work with the two triangles ABC and CDA.  The standard reason cited is ‘congruence from SSS’.  The standard image for this is a parallelogram, although neither the words of the problem, nor the content of the reasoning, require that picture.  

The GSP sketch explores the fact that there are several alternatives in the plane – the parallelogram is not a unique configuration – and asks the participant to consider the ‘congruence’ that is cited from SSS as an actual transformation.  The transformation depends on which drawing we have: the parallelogram or the ‘butterfly’ (a self-crossing quadrilateral as in the figure below).  
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At this point, there are several ways to explore what the transformation is.  All can contribute:

(i) visual inspection of the two triangles, in each of the cases (consider the point which does not move – the midpoint of the segment AC);

(ii) playing with a pair of physical triangles: physically manipulating one (the purple
 one) to place it on top of the second (the blue one);

(iii) focusing in on the single segment CA and AC and considering which transformations take one onto the other.  There are two variants: a half-turn about a plane axis located at the midpoint of the segment; or a reflection in a mirror constructed at right angles to the segment through the midpoint.  These are the transformations which also appear in (i) and (ii).  This focusing in on the segment simplifies the reasoning.  

(iv) Holding the full figure of two triangles and ‘seeing’ the transformation that takes the whole figure onto itself.  

At this point, there is a real advantage in having the physical model in hand.  Consider the fact that we do not need the two triangles to be coplanar!  Usually this problem is tackled in 2D.  However, what is given – and what is inferred – works perfectly well in 3D, where it is realized in infinitely many configurations.  When you hold the two triangles bent on the shared line, the shape takes shape.
  Again, there are several ways to ‘see’ what is going on:

(i) Consider how to manipulate one of the triangles onto the other:  perhaps a couple of rotations, a composition of a rotation with a reflection, or two reflections.  If one knows about combining spatial isometries, one realizes it is a single rotation. 

(ii) Consider the whole shape and experimentally think about a transformation that switches the two triangles: it is a rotation.   

(iii) How can one ‘see’ which rotation it is: there is a clear fixed point – the midpoint of the diagonal AC.  A key observation is that the two diagonals are equivalent for the analysis and for the rotation: the midpoint of BD is also fixed!

The conclusion is that we are looking at a half-turn about the axis joining the midpoints of the two diagonals.  

As one wrap-up, compare the two plane images as extremes of the 3D situation.  At one extreme, the ‘reflection’ of the butterfly is a spatial rotation.  This does, indeed, join the midpoints of the two diagonals.  At the other extreme, the two diagonals cross at their midpoints – and the rotation is the plane half-turn about this crossing point.  

A second wrap-up is to focus on the larger shape of the parallelogram.  We see that a parallelogram has a half-turn symmetry.  More important is the realization that this half-turn is the defining property of a parallelogram!  All of the other properties (equalities of opposite sides and angles, bisecting diagonals, parallel edges) follow directly from the half-turn.   

It is interesting to explore the fact that half-turn really is the defining property for parallel lines in the plane.  Any pair of lines with a half-turn symmetry do not intersect (in the plane).  The reasoning is revealing.  Consider one possible intersection P.  Due to a half-turn symmetry, there must be a second point of intersection – an image of P under a half-turn.  Since in the plane two distinct lines can intersect in at most one point, either we have coinciding lines, or the assumption of a first point of intersection was wrong!

Finally, consider a quadrilateral with a half-turn symmetry on the sphere.  All the congruences of angles, edge-lengths, bisecting diagonals, etc. follow.  All that is different is that we replace ‘parallel’ with ‘symmetric lines’ (of a lune) around the ‘center’ of the shape, and hence get an analogue of a parallelogram on the sphere.   

�looks pink on my screen (


�We need a picture!  I tried making a sketch that would look 3D, but I wasn’t happy with what I was getting.  I think a photo of a polydron arrangement would be best.





