
Jackiw 1 Visualizing Complex Functions

Visualizing Complex Functions
with The Geometer’s Sketchpad

Nicholas Jackiw
KCP Technologies, Inc.
njackiw@keypress.com

To appear October 2003 in: Triandafillidis, T. and Hatzikiriakou, K. Eds. Proceedings of
the 6th International Conference on Technology in Mathematics Teaching. 291-299 (Volos,

Greece: University of Thessaly.)
Abstract
This paper reviews the possibilities for modeling complex numbers in dynamic
geometry software environments, and suggests that as such tools evolve, despite not
being specifically adapted to complex analysis, their growing capabilities to support a
user’s conceptual refocusing on “arbitrary visual mathematics” makes them a
compelling tool to bring to the introduction to, and analysis of, functions in the complex
plane. The particular software used throughout is The Geometer’s Sketchpad version 4.

Dynamic Geometry and Complex Numbers
The greatest single leap forward in the history and development of the complex
numbers comes some 250 years after Cardano first proposes them, in the near-
simultaneous realizations of Argand, Gauss, and Wessel that a complex number can be
interpreted as, and represented by, a geometric point in two dimensions. This simple
correspondence introduces not only the ability to visualize the complex numbers—or,
now, the complex plane—in a simple and straightward sense, but to bring geometric
techniques to the interpretation and analysis of the mathematics of that complex plane.
With this deft movement, the connotation of the imagination in “imaginary numbers”
shifts quickly from imagining their gross mathematical absurdity to imagining their
great mathematical potential.
Over the past decade, interactive geometry software environments such as The
Geometer’s Sketchpad (Jackiw, 1991) and Cabri Geometry II (Laborde & Bellemain, 1992)
have rapidly come to play large roles in contemporary planar geometric visualization
and exploration, both within school and undergraduate education, but also—though to
a lesser degree—within mathematical research. This paper’s purpose is to explore the
potential for using these software tools to investigate and model complex numbers and
their operations, and to visualize functions defined on the complex plane.
Of course, the present work is not the first Dynamic Geometry perspective on complex
numbers. One of the activities to which software tools like Sketchpad were first applied
in the early 1990’s was geometric modeling, and thus the geometric interpretation of
complex values was quickly explored by early enthusiasts of the tools. (Lee Dickey with
Cabri, and Susan Addington and David Dennis with Sketchpad, are among the early
pioneers of such investigations.) Since the fundamental workspace of Sketchpad or
Cabri is (an electronic simulation of) the unbounded geometric plane, these programs at
their debut in some sense already offered effective models of the complex numbers.
What the tools lack at their most basic level, however, are pre-defined operations on
complex values—complex arithmetic, in other words, and perhaps complex integration
and differentiation. But within the constructionist paradigm of dynamic geometry
software, these were fit operations to be defined by an inquisitive user, who might then

Jackiw 2 Visualizing Complex Functions

not only build models of complex expressions, but models of the operators used within
those expressions.

6

4

2

i

5

r

A+B

O

B

A

Figure 1. Complex addition by vectors

Thus—for example—the model of complex
addition visualized in Figure 1, in which A,
B, and A+B are complex numbers, and the
dashed vector represents the image of B
translated by vector A. Vector addition
produces the sum A+B. If the horizontal
axis is declared to be real and the vertical
axis imaginary, we have computed the
complex sum of A and B.
Though in the illustration at left, A and B
obviously have specific locations and thus
fixed complex values, within dynamic
geometry software points can be dragged
to new locations. Thus dragging A and B
generalizes the constructed operation to
the addition of any pair of complex
numbers.

While such constructions lead to effective demonstrations of the dynamic behavior of
basic operations, the act of creating them is not in all cases necessarily revealing to a
student first grappling with the ideas of complex arithmetic. The emphasis on such
activity is more on the Euclidean operations that must be performed to accurately model
a—presumably given—definition of the complex operation, rather than on that
operation itself. Such constructions may be a useful exercise in modeling, but they focus
more on the model than on the modeled domain.

Building Microworlds for Complex Numbers
Fortunately, these laborious constructions can be abstracted into new fundamental tools
within the software. Beyond geometric operations and mathematical definitions,
dynamic geometry software has, since its first conception, offered sophisticated facilities
for virtualizing composite constructions into new conceptual units, that can then be
applied atomically as “extended primitives” of the software. This idea is found in
Sketchpad scripts and custom tools, or in Cabri macros. It reflects a deeper tradition
stemming from earlier didactic geometry technologies, including the “Repeat”
mechanism of The Geometric Supposer software of the mid-1980’s, and of course the idea
of subroutines in Logo and other programming languages. Among other things, these
technologies permit a teacher or curriculum developer to provide a pre-made dynamic
geometry environment that has been extended to include tools for a particular topic or
area of investigation.1 We use them here to develop basic microworlds for complex
arithmetic and function visualization.
In version 4 of Sketchpad, such extensions take the form of custom tools, devices that
define new objects (much as a compass or straightedge defines new objects) and that
appear—after they have been created—in the software’s basic toolbox along with its

1See Jackiw, 1997, for more on custom microworld design within dynamic geometry
environments.

Jackiw 3 Visualizing Complex Functions

fundamental tools (such as the electronic compass and straightedge). The most
straightforward way to define such a custom tool is by example: having built an
appropriate construction within the software—such as Figure 1—a user can identify the
portion (or totality) of the construction to be repeated, and then to Create A New Tool.
Sketchpad responds by abstracting the operation away from its particular geometric (or
coordinatized) form, and then summarizing it as a symbolic procedure. This procedure
describes the function of a new tool added to the toolbox. Custom tools may be simple
or sophisticated, and may draw on geometric constructions, planar transformations, or
arithmetical or algebraic derivations to define the objects they produce. Figure 2 shows
the procedural view of two equivalent custom tools that provide definitions of complex
addition, one based on geometric translation, the other based on coordinate arithmetic.

Figure 2. Two addition tools, with separate derivations but equivalent results

While such verbal descriptions of a custom tool’s
procedure can be inspected, or edited, by users, once
the tool has been defined, there is no requirement that
the verbal procedure ever be referenced again. Instead,
users can choose the tools by name from the main
toolbox, and wield them directly in the sketch. (In the
case of the tools in Figure 2, clicking a “Complex
Addition” tool on any two points will produce a third
point, their sum.)
Figure 3 shows a toolbox of basic complex arithmetic
tools, as well as two notational tools.2 (Clicking the
Cartesian or Standard value tools on a geometric point
produces a textual notation of its complex value, in one
of the two notations illustrated in Figure 4.)

2The toolbox illustrated here is contained in one of the example documents that come
with the default installation of Sketchpad. See
samples/sketches/advanced/complex.gsp.

Jackiw 4 Visualizing Complex Functions

Figure 3. Custom toolbox
for complex arithmetic

of the two notations illustrated in Figure 4.)

The benefit of having a coherent toolbox of related tools present at the start of a student
investigation or activity, rather than only as the object or endpoint of an activity, is dual.
First, clearly, the focus and content of that activity can be on the behavior or properties
of the phenomena being modeled by those tools, rather than on the mathematics of the
modeling act. Second, since these tools encapsulate mathematical constructions that are
at times themselves sophisticated, students combining them can work at a much higher
level of mathematical sophistication without requiring a correspondingly much higher
level of technical sophistication (with the software) or conceptual sophistication (with
the entire network of relationships from which the higher-level construction’s behavior
emerges from the combined effect of the behavior of each of its components’ procedural
subconstructions).
As students work, they can extend the
toolbox with additional tools that they
themselves find useful—and that,
presumably, they themselves create. This
process may repeat itself at several layers
of abstraction over the course of an activity
or an exploration, as students apply
existing tools to define new ones at
progressive levels of sophistication or
abstraction.

1

0.5

1 2

A = e0.25π

A = 0.70711+0.70711i

A

Figure 4. A complex value (point A, left)
described in Cartesian (upper) and Standard

(lower) notation

Graphing Complex Curves As Loci
Once we have access to a toolbox, we can begin modeling in earnest. Though the toolbox
only gives us single operations that are defined on points (for example: addition, defined
to map two addend points to a third sum point), two general operations allow us to
extend these productively:
Concatenation of Operations. By using different tools sequentially, we can build more
detailed expressions out of primitive operations; or (the reverse) we can decompose
tangled expressions into simple sequences of primitives. This is straightforward “order-
of-operations”-type thinking. To construct (2z!–!A)2/B from points z, A, and B, we might
first use the addition tool to double z, then the subtraction tool (for 2z!–!A), then a
multiplication—(2z!–!A)2—and finally a division (by B). The tools of the Complex
Arithmetic toolbox label their produced points with an appropriate symbolic expression
stated in terms of the labels of the input points (as in Figure 1). These labels—combined
with judicious hiding of intermediate results when they are no longer necessary—help
track the arithmetic interpretation of the growing total expression, as we develop its
parts with individual tools.
Graphing by Locus Construction. While so far we have worked only with points, the
Locus command allows us to visualize—or “image”—any planar curve or curves under
a complex transformation, by constructing the locus of a transformed point as a function
of the motion of its pre-image point traveling along the pre-image curve. This is a
straightforward application of the locus interpretation of graphing used on the Cartesian
plane to first conceptualize graphs of real functions: if a given pre-image point x defines,
through its position on the horizontal axis, some image point (x, f(x)), then the locus of
the image point as the pre-image travels the horizontal axis is the total graph y = f(x).
Here, if a given pre-image point z defines an image z’ under some transformation, then

Jackiw 5 Visualizing Complex Functions

the locus of z’ as z travels some curve s is the image s’ of that curve. With this technique,
Sketchpad’s Locus command can construct the image of segments, rays, lines, circles,
polygon perimeters, arcs and their segments and sectors, and finally, function plots and
other loci.
These two operations combine to provide a general-purpose complex graphing facility,
as demonstrated in figure 5. In the left illustration, two draggable points—z and
k—define a third point zk. The spiral graph—of z raised to all real powers—is the locus of
zk as k travels the real axis. Dragging point k in the completed diagram simply slides zk

along the spiral; dragging point z (which is free in the plane) expands and contracts the
spiral’s curvature. This example, as well as that of Figure 5b, also demonstrates the
conventional solution to what might be called “the problem of complex graphing.”
When graphing ¬fi¬ functions on a Cartesian coordinate system, the one-dimensional
output range—f(x)—is projected perpendicular to the one-dimensional input domain x,
creating a two-dimensional graph. But with complex functions, both input and output
values are already two-dimensional (real and imaginary), and thus four dimensions are
required to visualize the result. The approach commonly taken for textbook illustrations
is to graph only some subset of the input plane, and to superimpose its output on the
same coordinate system. Usually these examples adopt the language of transformations
(a transformed image is superimposed on its own pre-image), and a frequent choice for pre-
image is some sort of checkerboard or lattice, since its abundant interior right angles
allow one to quickly inspect conformality. In Sketchpad, the pre-image lattice in Figure
5b is constructed with Euclidean segments. Complex arithmetic tools produce a point
z’=z2/5 given some independent point z. (These points are no longer visible in the
illustration.) The image lattice is then constructed curved segment by curved segment,
where each curved segment is the locus of point z’ as point z travels the corresponding
straight segment in the pre-image lattice.

1

0.5

-0.5

-1

-1 1 2

 zk

k = 1.80

z
k

5a. Point zk is z raised to the present value (1.8)
of k; the spiral depicts z raised to all real powers

2

-2

-5 5

z fi
z2

5

O

5b. A lattice and its image under the given
transformation

It is only at this point—that is, only once these conceptual and technological tools are
established—that applying a dynamic geometry environment to complex functions
becomes uniquely interesting. Other mathematics packages can compute complex
values and graph complex functions with less conceptual overhead than Sketchpad, but
they lack dynamic geometry’s signature ability to experiment with a configuration
interactively by dragging its components. Dragging and—to a lesser degree—animation
allow one not only to visualize these systems across change or parametric evolution, but
permit one to following Needham’s (1997) seminal work in bringing a kinematic,
Newton-like approach of “geometric calculus” to complex analysis and visualization.

Jackiw 6 Visualizing Complex Functions

0.5

-0.5

-2 -1 1f(z)

r1
r4

r2

r3z

0.5

-0.5

-2 -1 1

f(z)

r1 r4

r2

r3
z

0.5

-0.5

-2 -1 1

r1 r4

r2

r3

z

0.5

-0.5

-2 -1 1

r1 r4

r2

r3

z

Figure 6. Winding Around Roots

Figure 6 suggests some of the visual
dynamics that become accessible in the
dragging environment. Each picture shows
a circle being dragged across the plane,
and the image of that circle under the
function

f(z) = (z – r1) (z – r2) (z – r3) (z – r4)

As usual, the image was constructed by
first calculating—using the complex
arithmetic tools—the function’s value f(z)
for one independent point z, and then
constructing the locus of f(z) as z defined
(or traveled around) the pre-image circle.
Over the four frames (read from top to
bottom), the user drags and expands the
circle to encircle roots of the function. In
the first frame, only r1 is “captured.”
Correspondingly, the circle’s image winds
around the origin, since the origin (zero) is
the image of the root. But as the circle
grows (frame 2) to capture a second root
(r2 in frame 3), an inner loop of the image
snakes out to encircle the origin a second
time. In the final frame, the circle expands
toward r3, and we see a new loop forming
to wind a third time around the origin. The
winding number of the image determines
the number of roots (counted in their
algebraic multiplicity) encircled by the pre-
image.

As is usually the case with descriptions of dynamic geometry, actually dragging these
configurations is much more compelling than observing static pictures!

Graphing Planar Transformations As Surface Plots
Despite the appeal of dragging, Figure 6 reveals one of the shortcomings of the
conventional solution to the “problem of complex graphing.” When both pre-image (the
circle) and image (the origin-winding quasi-cardioid) are super-imposed on the same
coordinate system, legibility suffers. In more involved visualizations, it becomes
increasingly difficult to distinguish input from output, “cause” from “effect.” More
generally, the conventional approach struggles between opposing imperatives. On the
one hand, we want our image and pre-image to be as “large” as possible, since we are
interested in gaining a sense of the effect of our complex transformations across the
entire plane, not just on a single point or point locality. On the other hand, we are
interested in keeping our image and pre-image small, to avoid overlap. Physically
isolating the image into a separate visualization from the pre-image (a separate
illustration of the plane) is one approach, but replaces the immediacy of a unified
visualization with a more abstract representation requiring additional interpretation to
reconcile conceptually. Thus we are encouraged to move beyond the conventional

Jackiw 7 Visualizing Complex Functions

solution, and to explore techniques for visualizing the effect of a complex transformation
over the entire plane, on the entire plane.
To proceed in this direction, we need first establish techniques for plotting surfaces, and
since we are in a dynamic geometry environment, we must derive these from
mathematical principles and primitives rather than look to built-in software commands.
To plot a surface ideally, one needs first to be able to visit every point on the plane.
Practically, we seek to visit some regular subset of points in a planar region. Once we
can visit such points, we can evaluate a condition or function there, to determine the
value of the surface at or above that planar point. But traditional loci or function plots in
Sketchpad and loci in Cabri are one-dimensional curves, rather than two-dimensional
areas. So this basic requirement—a tour of some planar region—is sufficiently
challenging from the perspective of compass-and-straightedge constructions, or even
from the much richer set of primitives that characterize a dynamic geometry
environment, that it’s worth struggling with, with students. Workable solutions draw on
a variety of mathematical approaches and governing metaphors:
Space Filling Curves. Can a one-dimensional curve be
wrapped in such a way that it fills a two-dimensional
area? If so, sampling points on the curve—that is, taking a
locus of a point traveling that curve—is equivalent to
sampling a planar region. As well as wrapping
configurations, one can imagine torn-and-reassembled
configurations, as when one tears a (near) one-
dimensional roll of wallpaper into strips that,
reassembled side-by-side, cover a two-dimensional wall.

Random Motion. At right, x and y are points on their
respective segments; (x, y) is their projection. Randomly
varying x and y along their segments causes (x, y) to
sample randomly the rectangular region.

(x, y)

x

y

Synchronized Motions. If x and y tour their segments at
different rates, their projection scans the rectangle in
much the way a cathode ray “scans” the phosphor screen
of a conventional television monitor. Different speeds can
be achieved with Sketchpad’s animation, or the velocity
of each particle can be constructed as a separate
parameterization of time.

(x, y)

x

y

Iterative Decomposition. In this approach, the
quadrilateral ABCD is decomposed (via Sketchpad’s
Iterate command) into its four corner quadrilaterals.
Repeating this decomposition recursively a few times
generates progressively smaller-meshed “screens”
covering the original quadrilateral area (with 4, 16, 64,
256, 1024… interior samples). The advantage of this
approach is its variability of resolution—one can work at
low resolution when building a draft model for speed
and convenience, and then increase the depth of iteration
to improve the sampling detail of a final visualization.

A

C D

B

Jackiw 8 Visualizing Complex Functions

Once a technique has been established for sampling points on the plane—that is, for
visiting a region of complex values—surface plots of complex functions or
transformations can be built by evaluating the function at each sampled point, and
characterizing the surface at that point by the resulting value. The particular geometric
interpretation of that value can vary richly, as the visualizations of Figure 8 attempt to
suggest. In 8a, an arrow connects each sampled point z with its image f(z)—quite
literally, z fi f(z). 8b adopts a planar coloring scheme proposed by Frank Farris (1998) in
his MAA review of Needham (1997). In this approach, a standard colorization is given to
the complex plane, in which the hue of some point z corresponds to its argument (its
angle with respect to the positive real axis) and the shade value or tonal density ranges
with z’s modulus (distance from the origin), from white at the origin to black at infinity.
Given this or any other distinctive coloration of the plane, a Farris plot of the complex
function f involves recoloring the plane so that each point z has the color assigned to
point f(z) in the canonical coloration. These vivid plots readily reveal algebraic
multiplicities through multiply-spiraling hue configurations, and the roots and poles of f
appear as pure white and pure black locations. Finally, 8c depicts perhaps the most
literal interpretation of “surface plotting.” Here the height of the visual surface
corresponds to the modulus of the given function. These modular surfaces reach down
to touch the plane at their roots, and explode upwards toward infinity at their poles.

2

1

-1

-2

b a

a. Vector field of f(z) = az+b

b. Farris plot of the general
Möbius transformation

z!fi!(az+b)/(cz+d)

+i
-1

-i
+1

c. Modular surface of
f(z) = a/(b+z2)

Figure 8. Visualizations based on planar sampling
Conclusion
The possibilities for visualizing complex functions and results in complex analysis with
dynamic geometry software appear numerous. What environments such as Sketchpad
lack in native facility for working with complex numeric data types and visualization
capabilities, they compensate for with interesting didactic trajectories through the
geometric interpretation of complex numbers; the mechanics of user-constructed graphs;
and the potential for interactive and direct manipulation of the resulting, dynamically-
generalized visualizations.

References
Farris, Frank. (1998) Complex Colorations. MAA Online:

http://www.maa.org/pubs/amm_complements/complex.html
Jackiw, Nicholas (1991, 2001). The Geometer’s Sketchpad computer software. Emeryville:

Key Curriculum Press.
Jackiw, Nicholas (1997). “Drawing Worlds: Scripted Exploration Environments in The

Geometer's Sketchpad” in Geometry Turned On!: Dynamic Software in Learning,

Jackiw 9 Visualizing Complex Functions

Teaching, and Research, eds. James R. King and Doris Schattschneider (Washington,
D.C.: The Mathematical Association of America): 179-184.

Laborde, J.-M. and Bellemain, F. (1992). Cabri Geometry II computer software. LSD2-
IMAG Grenoble and Texas Instruments.

Needham, Tristan (1997). Visual Complex Analysis. Oxford: Oxford University Press.

