
Introducing Calculus Topics with The Geometer’s Sketchpad
The five activities here are suitable for introducing the main topics of a calculus course. You can either use all of the activities at the beginning of the course to give students an overview of the topics they will be covering, or you can use each activity as you introduce the particular topic covered in the activity. These activities are also useful at the end of a pre-calculus course. Pursuing these activities with The Geometer’s Sketchpad® will give students a hands-on introduction to the major concepts to be studied in calculus. By actually manipulating sketches that introduce these concepts, students are more involved and find the concepts more vivid and more accessible than is possible by means of textbook or classroom explanations.

The activities are designed to be short and easy to use. Each activity comes with a prepared sketch for students to investigate, and no prior experience with Sketchpad is required for these investigations.

My sincere thanks to Paul Foerster for the inspiration for these activities. The first chapter of his book Calculus: Concepts and Applications (Key Curriculum Press, 1997) provides an introduction to the big ideas that students will study throughout the year in calculus, and these Sketchpad activities are adapted from the lessons in that chapter.
I’d also like to thank the participants in the Key Curriculum Press 2003 Summer Institutes on Exploring Calculus with The Geometer’s Sketchpad and on The Geometer’s Sketchpad: Advanced Tools and Topics. Participants in both these institutes used the activities and made valuable suggestions for improving and clarifying the handouts and sketches.
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Contents

2Instantaneous Rate


4One Type of Integral


6Rectangular and Trapezoidal Accumulation


8Limits with Tables


10Limits with Delta and Epsilon


12Teacher Notes




© 2003 KCP Technologies, Inc.  Limited Reproduction Permission: KCP Technologies and Key Curriculum Press grants the teacher who purchases The Geometer’s Sketchpad the right to reproduce sample activities herein for use with his or her own students. All other rights reserved. Unauthorized copying of these activities is a violation of Federal Law. http://www.keypress.com/sketchpad

Instantaneous Rate
Consider a door equipped with an automatic closer. When you push it, it opens quickly, and then the closer closes it again, more and more slowly until it finally closes completely.
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A: Door Angle as a Function of Time


1.
Open the sketch InstantaneousRate.gsp in the CalculusIntro folder. Press the Open Door button to operate the door. Observe the door opening and closing, and the graph showing the angle of the door as a function of time. 


2.
Drag Point t1 back and forth along the time axis, and watch how the angle of the door changes, and how the point on the graph corresponds to the door’s angle. Observe the values of the t1 and d1 measurements as you drag.

Q1
For what values of t1 is the angle increasing? How can you tell?
Q2
What is the maximum angle the door reaches? At what time does this occur?
B: The Door at Two Different Times
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The value Δt is the separation between the two values of time (t1 and t2).


3.
To find the rate of change of the angle of the door, you need to look at the door’s position at two different times. Press the Show t2 button to see a second point on the graph, slightly separated from Point t1. Drag Point t1 back and forth, and observe the behavior of the new points on the graph. To change the separation of the two times, press the button labeled 1.0, and then the button labeled 0.1.


4.
Make the separation of the two points smaller than 0.1. Can you still see two distinct points on the graph? Can you see the values of t2 and d2 change as you make h smaller? Experiment with dragging the Δt slider, to change the separation of the two values of time directly.

Q3
What is the largest separation you can get by moving the slider? What’s the smallest separation you can actually observe on the graph? 

Q4
As you make Δt smaller, can you observe changes in the numeric values of t2 and d2 even when you can no longer observe any changes on the graph?
C: The Rate of Change of the Door’s Angle
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Hint: Divide the change in the angle by the change in the time.


5.
Set Δt to 0.1, and then use the numeric values of t1, d1, t2 and d2 to calculate the rate of change of the door’s angle at any particular time. (Use Sketchpad’s calculator to do this calculation.)

Q5
What are the units of the rate of change? What does the rate of change tell you about the door’s motion?
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When you press this button a dotted line appears connecting the two points on the graph.


6.
Press the Show Rate button to check your result. 

Q6
What’s the relationship between the dotted line and the rate of change you calculated?
Q7
Move t1 back and forth. How can you tell from the rate of change whether the door is opening or closing? How can you tell whether its rate is fast or slow?
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 The value of t1 should now be exactly 1.10000.

Q8
Use the buttons to set t1 to 1.0 and Δt to 0.1. What’s the rate of change?
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 You should now have two rows of numbers in the table, with the first row permanent and the second row changing as the measurements themselves change.


7.
Select the numeric values of t1, d1, t2, d2, Δt and the rate of change. With these six measurements selected, choose Graph | Tabulate. Double-click the table to make the current entries permanent. 

D: The Limit of the Rate of Change

You may want to press the 0.1 button and then the 0.01 button again to check the motion of the dotted line.


8.
Set the time interval (Δt) to exactly 0.01. Note the new value of the rate of change. Could you see the dotted line move as you reduced the time interval? With the interval set to 0.01, double-click the table to permanently record these new values.

Q9
How does this rate of change compare to the value when Δt was 0.1? 


9.
Similarly, record in the table values for intervals of 0.001, 0.0001, 0.00001, and 0.000001
Q10
What do you notice about the value of the rate of change as the time interval becomes smaller and smaller? What value does the rate of change seem to be approaching? 

Q11
Can you see the dotted line move as Δt changes from 0.001 to 0.0001?

10.
Set the value of t1 to 3 seconds (by pressing the t->3 button), and collect more data on the rate of change of the door’s angle. Collect one row of data for each time interval from 0.1 second to 0.000001 second. 

The average rate of change is the rate of change between two different values of t. The instantaneous rate of change is the exact rate of change at one specific value of t. Since you must have two different values to calculate the rate of change, one way of measuring the instantaneous rate of change is by making the second value closer and closer to the first, and finding the limit of the average rate of change as the interval gets very small.

The instantaneous rate of change of a function – that is, the limit of the average rate of change as the interval gets close to zero – is called the derivative of the function. 

Q12
What is the derivative of the door’s angle when t1 is 3 seconds?
One Type of Integral
Consider starting up when driving a car. The speed increases for a while, and then levels off at 60 ft/sec. From a graph of the speed, how could you determine the distance the car has traveled?

The distance traveled from t = 70 sec to t = 100 sec is equal to the area of the shaded rectangle on the right, because rate · time is equal to height · width.
Recall that distance = rate·time. Because the speed is constant in the shaded part on the right, from t = 70 sec to t = 100 sec, you can multiply rate by time (60 ft/sec  * 30 sec) to find that the car travels 1800 ft during this period of time.

The definite integral of a function corresponds to the area under the graph of the function.

Determining how far the car travels during the time from t = 0 sec to t = 30 sec is harder, because the speed is changing. The process of finding this distance, when the speed is changing, is called finding the definite integral.  

A: The Distance a Car Travels


1.
Open the sketch DefiniteIntegral.gsp in the CalculusIntro folder. Press the button labeled Drive Car to start the car. Observe how the car’s speed behaves, starting from zero and ending up at 60 ft/sec. 


2.
To find the total distance the car travels during any period of time, you’ll have to estimate the area under the curve. Press the button labeled Show Grid to display a grid you can use in estimating the area.

Q1
How wide is each square of the grid? What are the units?
Q2
How high is each square of the grid? What are the units?

Q3
What’s the area of each square of the grid? What are the units?

Q4
How many squares are in the right-hand shaded region? How can you use this result to find the distance traveled from t=70 sec to t=100 sec?

Now you’ll count squares to find the area (distance traveled) for the left-hand region.  

To keep track, you can use the Point Tool to put a point inside each square you count.

3.
Count the number of complete squares that are totally contained within in the left-hand shaded region. 


4.
Now estimate the area of the squares that are partially within the shaded region. For each such square, estimate whether it is more than half shaded, or less than half shaded. Count only the squares that are more than half shaded. Add this number to the number of complete squares you counted in Step 3.

Q5
What’s your estimate of the number of squares in the left-hand shaded region?

Remember to multiply the number of squares by the value represented by each square.
Q6
What’s the distance the car traveled from t = 0 sec to t = 30 sec?


5.
Select the Square Size parameter, and then press the minus sign on the keyboard to change the size of the squares to 2.0.

Count the complete squares first, and then count all the partial squares that are more than half shaded.

6.
Count the squares in the left-hand shaded region.

Q7
How many squares do you get this time?

Q8
Based on this count, what’s the distance the car traveled?

Q9
Do you think this estimate is more or less accurate than the previous one? Why? How could you make it still more accurate?

Q10
Estimate the area from t = 30 sec to t = 70 sec, and add up your results for the three areas to find the total distance the car traveled.

B: Definite Integrals for Other Functions


7.
On page 2 of the sketch, you’ll find another function, y = 8 · 0.7x. Estimate the definite integral for this function, using the domain from x = 1.00 to x = 7.00.
Q11
What’s your estimate of the definite integral for this function?

Q12
Double-click the Arrow Tool on the Square Size parameter, and change the value of the parameter to 0.5. What’s your new estimate of the definite integral for this function?

Q13
Change the value of the parameter to 0.1. If you had to count such small squares, what kind of function would you prefer to have? Why?

C: Explore More

Be careful to determine the area of each rectangle correctly.
Use several different size rectangles to estimate the definite integral for the function on page 3 of the sketch.

Using the grid on page 4 of this sketch, plot some other functions of your choice and estimate the definite integrals. Here are some possible choices:

f(x) = sin (x) from x = 0 to x = π
f(x) = sin (x) from x = π to x = 3π/2 (What should you do about cells that are below the x-axis?)

g(x) = x2 – 2x - 1 from x = 1 to x = 2
g(x) = x2 – 2x - 1 from x = 2 to x = 3
Rectangular and Trapezoidal Accumulation
As you’ve discovered, it’s time-consuming to use squares to accurately estimate a definite integral. An accurate estimate requires small squares, so there are a lot of them to count.

A quicker method is to count all the squares in a column at once, by calculating the area of a rectangle or a trapezoid. 

A: Definite Integrals by Rectangles

Note that this sketch has six rectangular columns that can be used to estimate the definite integral.


1.
Open the sketch TrapezoidalAccumulation.gsp in the CalculusIntro folder. 

Q1
What’s the sum of the areas of the rectangles?
Q2
Do you think this sum is a good estimate of the definite integral? Why or why not?


2.
Press the button labeled Animate Grid to change the number of rectangles used in estimating the definite integral.

Q3
As the animation progresses, watch the sum measurement. What’s the largest estimate for the definite integral? What’s the smallest?

3.
Stop the animation, and choose Undo from the Edit menu to return the number of rectangles to 6. 


4.
Select two measurements: width and Sum of Rectangle Areas. Choose Tabulate from the Graph menu to create a table. 


5.
With the table selected, choose Add Table Data from the Graph menu. Click the radio button to add 10 entries as values change, and then click OK.


6.
Press the Animate Width button again. This time the various estimates are recorded in the table.

Q4
Which of the estimates recorded in the table do you think is the most accurate? Why do you think so?
B: Constructing Your Own Rectangles


7.
Go to page 2 of the sketch. On this page you will construct some rectangles of your own.


8.
Press and hold the Custom Tool icon. From the menu that appears, choose the Rectangle Tool.


9.
You’ll use the tool to construct three rectangles. First, click on the x-axis at the start of the domain, exactly where x = 1.0. This should produce a single rectangle, along with an area measurement.

 If you haven’t done it right, choose Undo from the Edit menu as many times as necessary, choose the Rectangle Tool again, and then try again from step 9.


10.
Click on the bottom right-hand corner of the rectangle you just constructed to make a second rectangle. Click on the bottom right-hand corner of the second rectangle to make the third. If you’ve done it right, the last rectangle ends exactly at x = 7.0.

Q5
Each time you used the Rectangle Tool, a measurement appeared with the area of that rectangle. What’s the sum of the three areas?
You can use Parameter Properties to determine the amount by which the parameter will change when you press the plus or minus key on the keyboard.


11.
Select both the width and height measurements, and press the minus key on the keyboard twice. This will change both values from 2.0 to 1.0, so the widths of your rectangles are now 1.0. Now you need more rectangles.


12.
Use the Rectangle Tool again to make the three more rectangles required to cover the entire domain to x = 7.0. Add up the six area measurements for the six rectangles.

Use Sketchpad’s calculator to add up the area measurements.

Q6
Now that you have six rectangles, what’s the sum of their areas? Is this more or less accurate than your previous result?
C: Definite Integrals by Trapezoids

 Rectangles don’t measure the area at the top of each column very well.

Rectangles don’t do a very good job of estimating the squares that are only partially within the area we want to add up. Using trapezoids will give a more accurate result.


13.
Go to page 3 of the sketch. Choose the Trapezoid Tool from the Custom Tool menu.

 This should produce a single trapezoid, along with an area measurement.


14.
Click the Trapezoid Tool on the x-axis at the start of the domain, exactly where x = 1.0.

15.
Click again to construct five more trapezoids, ending at x = 7.0.

16.
Add up the six area measurements.

Q7
Use the Calculator to add up the areas of the trapezoids. What’s the sum?
Q8
How does this area compare with the area of the rectangles from the previous page? Which do you think is more accurate?

The more accurately you measure the area, the closer you come to the exact value of the definite integral. The definite integral can be defined as the limit of the total area as the width of the approximating rectangles or trapezoids decreases.
Limits with Tables
The definition of both derivative and integral involves the concept of a limit. In this activity you’ll explore the mathematical meaning of the limit of the value of a function. You’ll do so by making a table of values, choosing values closer and closer to the x-value at which you want to find the limit.

A: A Table of Values

 To calculate f(5), choose Calculate from the Measure menu, then click on the function f(x) in the sketch, press 5 on the calculator’s keypad, and finally click OK.

1.
Open the sketch LimitByTable.gsp in the CalculusIntro folder. Note that this sketch contains the function 
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2.
Use Sketchpad’s calculator to evaluate f(5). 

Q1
What’s the result? Why do you think you get this result?

3.
The sketch contains a parameter x. Double-click this parameter to change its value. First change it to 4 and record below the value of the function f(x). Then change x to 5 and record the function’s value. Finally change it to 6 and record the value again.

Q2
What’s f(4)? ______                 f(5)?_________         f(6)?__________

4.
Change the value of the parameter x to 4.5, and click the button labeled Animate by 0.1.

Q3
What happens? What values does x take on? When does it stop?
Make sure the value of x is reset to exactly 4.5 before collecting table data.


5.
You can collect the changing values in the table on the right side. Select the table and choose Add Table Data from the Graph menu. Click the button to add 10 entries as the values change, and click OK.


6.
To actually collect the values in the table, the values must be changing. Click the Animate by 0.1 button to change the parameter and add values to the table.

Q4
What does the table show for f(5)? Can you see a pattern in the values of f(x) before and after f(5)? If you followed that pattern, what would be the value for f(5)? (This value is the limit of f(x) as x approaches 5.)
B: Getting Closer to the Limit

If your table gets too large, create a second table, or select the existing table and choose Graph | Remove Table Data.


7.
To get values of f(x) that are closer to this limit, you need to use values of x that are closer to 5. Double-click the x parameter and change its value to 4.95. Then add 10 more entries to the table, and click the Animate By 0.01 button to actually add entries.

Q5
Does the pattern still indicate the same limit as x approaches 5? How close do the new values actually come to the limit?
 You may have to drag the table vertically to see the new entries.


8.
To get values even closer to the limit, change x to 4.995, and add 10 more entries, using the Animate By 0.001 button. 

Q6
Does the pattern still indicate the same limit as x approaches 5? How close do these new values actually come to the limit?
Consult your table to answer the next questions.
Q7
Approximately how close must x be to 5 so that the value of f(x) will be within 0.01 of the limit?

Q8
Approximately how close must x be to 5 so that the value of f(x) will be within 0.001 of the limit?
C: Explore More

If you need to remove entries from a table, select the table and choose Graph | Remove Table Data.
Change the function to one of the following, and collect similar data. For each function, describe your findings, tell whether or not the function has a limit L, and give a value of L (if possible).
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To change a button’s properties, select the button by clicking on its handle. Then choose Edit | Properties.

The Animation Buttons in this sketch are set to animate x on both sides of the value 5.0. You can change the properties of the buttons to use a different domain. (Go to the Animate panel of the Properties dialog to do so.) Modify the buttons to investigate one or more of the following limits.  
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Limits with Delta and Epsilon
The formal definition of a limit is as follows:

L is the limit of f(x) as x approaches c if and only if:

For any ε > 0, no matter how small,

there exists a positive number δ such that, 

when x is within δ of c, 

f(x) is within ε of L.

In this activity you’ll determine the limit L of a function, and you’ll adjust the value of δ to satisfy the definition above. For some functions and values of c this will work, because the limit exists. For other functions and values of c this won’t work, because there is no such limit.

A: First Function


1.
Open the sketch LimitEpsilonDelta.gsp in the CalculusIntro folder. Note that this sketch contains the function 
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2.
Double-click the parameter c and set its value to 5. Drag point x along the axis, and observe the values of x and of the function. 

Q1
Use the Move x -> c action button to move x to the exact value of c. What happens? What’s the value of f(c)?


3.
Drag x back and forth near c, and observe the values of x and f(x).

Q2
What do you think is the limit of the value of the function when x is close to c?


4.
Double-click the parameter L and change its value to this limit.


5.
Click the Show Epsilon action button. This button shows in green a range above and below L on the y axis. Use the ε slider to change the value of epsilon, and observe the results. Manipulate the slider so that ( is approximately 0.25.

 To confirm numerically, observe the value of |f(x) – L|.

Q3
Drag x back and forth. For what values of x is the value of the function within ( of L? (In other words, for what values of x does the horizontal red segment touch the green portion of the y-axis?)


6.
Click the Show Delta action button. Drag the ( slider back and forth, and observe the effect on the horizontal blue portion of the x-axis. Click the Restrict x action button, and drag x back and forth. Observe that the value of x is now restricted to the blue area.

Your job now is to set ( so that the value of f(x) is always within ( of L.

 Use the Show Segments button to help you make this adjustment.

7.
Drag the ( slider until you think this condition is met. That is, make the blue portion of the x axis small enough that the value of the function will always be within the green portion of the y axis. Drag x back and forth to test your result.
Q4
What value of ( is required to keep f(x) within ( of L?


8.
Now try a smaller value of (. Set ( = 0.15, and determine the value of ( required to keep f(x) within ( of L.

Q5
What value of ( is now required to keep f(x) within ( of L?

Q6
Do you think you can find an appropriate value of ( , even if ( is very small? Justify your answer.

B: Second Function

 For this function, the values of c and L are already set for you.

9.
Go to page 2 of the sketch. On this page you’ll investigate the limit of a different function. 

10.
Click the Show Epsilon action button, and make sure that ( is close to 1.0. Also click the the Show Delta and Show Segments action buttons.

Q7
Can you adjust ( to keep f(x) within ( of L? What value of ( must you use?


11.
Now choose a smaller value of (, by setting ( = 0.50. Try to adjust ( to keep f(x) within ( of L.

Q8
What happens when you try to adjust ( to keep f(x) within ( of L? Does it help to use a smaller value of (? Can you make this work by choosing a different value of L?

C: Other Functions


12.
Go to page 3, containing the function to 
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. Set the value of c to 3.0. Set ( = 1.00. Experiment with various settings of L and (.

Q9
Are there any values of L and ( that keep f(x) within ( of L? If so, what values did you use? If not, why not?

Try some of the functions below:
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Teacher Notes
Instantaneous Rate

Use this activity for several purposes:

· make a connection between instantaneous rate and slope of the tangent to the graph, 
· get students to see the instantaneous rate as a limit of the slope between two points, just as the tangent represents the limit of a secant line.
· introduce the concept and definition of the derivative

Q1
For what values of t is the angle increasing? How can you tell?
The angle increases from t = 0 to approximately t = 1.45. You can tell because the maximum value of the angle occurs at approximately t = 1.45.
Q2
What is the maximum angle the door reaches? At what time does this occur?
The maximum angle is approximately 106º, at t = 1.45. 
Q3
What is the largest separation you can get by moving the slider? What’s the smallest separation you can actually observe on the graph? 

The slider has a maximum value of 1. It uses a logarithmic scale, so it’s easy to achieve very small values – values that are much smaller than can be observed on the graph.
Q4
As you make Δt smaller, can you observe changes in the numeric values of t2 and d2 even when you can no longer observe any changes on the graph?

Yes, the displayed values (to 5 decimal digits) continue to show the changes.
Q5
What are the units of the rate of change? What does the rate of change tell you about the door’s motion?
The units are degrees per second. The rate of change tells you by how many degrees the door is opening or closing for every second.
Q6
What’s the relationship between the dotted line and the rate of change you calculated?
The rate of change is the slope of the dotted secant line. As the secant line approaches tangency, the calculated rate of change approaches the instantaneous rate of change.
Q7
Move t1 back and forth. How can you tell from the rate of change whether the door is opening or closing? How can you tell whether its rate is fast or slow?

When the rate of change is positive, the door is opening; when the rate is negative, it’s closing. When the rate of change is close to zero, the door is moving slowly; when the absolute value of the rate of change is large, it’s moving quickly.

Q8
Use the buttons to set t1 to 1.0 and Δt to 0.1. What’s the rate of change?
When t1 = 1 and Δt = 0.1, the calculated rate of change is 26.33629 degrees/sec.
Q9
How does this value compare to the value you found when h was 0.1?
The average rate of change is higher (over 30 degrees/second), and appears to be a more accurate value for t1 = 1.0.
Q10
What do you notice about the value of the rate of change as the time interval becomes smaller and smaller? What value does the rate of change seem to be approaching?

The rate of change seems to be approaching a limit; the differences are less and less. The rate of change seems to be approaching 30.685… degrees/sec.
Q11
Can you see the dotted line move as Δt changes from 0.001 to 0.0001?
No, the change is too small to observe on the graph.
Q12
What is the derivative of the door’s angle when t1 is 3 seconds?
The derivative (that is, the limit of the rate of change)  seems to be about -26.986… degrees/sec. The negative sign means that the door is closing.
One Type of Integral
This activity and the following one introduce the concept of definite integral – the concept of accumulating the value of a function over a particular domain of values of the independent variable. The practical application, in which we use the speed function to determine distance traveled, helps to suggest the usefulness of the definite integral.

Q1
How wide is each square of the grid? What are the units?
Each grid square is 5 seconds wide.
Q2
How high is each square of the grid? What are the units?

Each grid square is 5 ft/sec high.
Q3
What’s the area of each square of the grid? What are the units?

Each grid square represents 25 feet of travel.
Q4
How many squares are in the right-hand shaded region? How can you use this result to find the distance traveled from t=70 sec to t=100 sec?

The right-hand region has 6 · 12 = 72 squares. Because each square represents 25 feet of travel, the car travels 72 · 25 = 1800 ft during this period of time.
Q5
What’s your estimate of the number of squares in the left-hand shaded region?

Answers vary. There are approximately 44 whole squares and 7 squares that are more than half shaded, for a total of 51 squares in the left region.
Q6
What’s the distance the car traveled from t = 0 sec to t = 30 sec? 

Answers vary. The car traveled approximately 1275 feet.
Q7
How many squares do you get this time?

Answers vary. There are approximately 320 or 330 squares in the left region.
Q8
Based on this count, what’s the distance the car traveled?

Answers vary. A count of 325squares corresponds to 1300 feet of travel.
Q9
Do you think this estimate is more or less accurate than the previous one? Why? How could you make it still more accurate?

This estimate is more accurate. The smaller squares allow a more accurate measurement, because they fit the curve better. You could have a more accurate result by making the squares still smaller.
Q10
Estimate the area from t = 30 sec to t = 70 sec, and add up your results for the three areas to find the total distance the car traveled?

There are about 597 squares between t = 30 sec and t = 70 sec, representing a distance of 2388 ft. The total distance traveled is about 1300 ft + 2388 ft + 1800 ft = 5488 ft .
Q11
What’s your estimate of the definite integral for this function?

Based on 14 squares, the definite integral is about 14.
Q12
What’s your new estimate of the definite integral for this function?

Based on 55 squares, the definite integral is about 13.75.
Q13
Change the value of the parameter to 0.1. If you had to count such small squares, what kind of function would you prefer to have? Why?

If the function was constant, we could just find the area of the rectangle instead of counting. If the function was a linear function, we could find the area of a trapezoid. Either method is much easier than trying to count every single square.
Trapezoidal Accumulation

This activity builds on the last by developing a more accurate and more efficient way of accumulating values.
The first page of this sketch shows a trapezoidal accumulation in which the number of trapezoids can be varied. This construction is provided as a tool, and is explained in detail, in the sketch DefiniteIntegralToolsl.gsp.

Q1
What’s the sum of the areas of the rectangles?
The sum of the areas is approximately 38.5.
Q2
Do you think this sum is a good estimate of the definite integral? Why or why not?

It’s a better estimate than using rectangles. Still, it’s not great, because the shapes of the trapezoids don’t match the function very well.
Q3
As the animation progresses, what’s the largest estimate for the definite integral? What’s the smallest?
The largest is 40.32, and the smallest is 38.50.
Q4
Which of the ten estimates recorded in the table do you think is the most accurate? Why do you think so?
The last estimate uses the smallest trapezoids, and so is more accurately fitted to the graph.
Q5
Each time you used the Rectangle Tool, a measurement appeared with the area of that rectangle. What’s the sum of the three areas?
The sum of the three rectangles is 19.38.
Q6
Now that you have six rectangles, what’s the sum of their areas? Do you think this is more or less accurate than your previous result?
The sum of the three rectangles is 16.47. This is significantly closer, although by looking at the rectangles it’s clear that it still overstates the true value.
Q7
Use the Calculator to add up the areas of the trapezoids. What’s the sum?
The sum of the areas of the three trapezoids is 14.00.
Q8
How does this area compare with the area of the rectangles from the previous page? Which do you think is more accurate?
The result is smaller, and eliminates most of the excess of the rectangles. The trapezoids give a far more accurate result.
Limits with Tables

This activity introduces the fundamental concept of a limit numerically, by looking at values in a table. The formal definition and manipulation of delta and epsilon are left for a later activity.

Q1
What’s the result? Why do you think you get this result?
The result is undefined, because the divisor is (x-5) and division by zero is undefined.
Q2
What’s f(4)? f(5)? f(6)?
f(4) = 3.60, f(5) is undefined, and f(6) = 4.40.
Q3
What happens? What values does x take on? When does it stop?
The parameter changes from 4.5 up to 5.5 in steps of 0.1 and then returns to its original value.
Q4
What does the table show for f(5)? Can you see a pattern in the values of f(x) before and after f(5)? If you followed that pattern, what would be the value for f(5)? (This value is the limit of f(x) as x approaches 5.)
The table shows an undefined value for f(5). Values before f(5) are increasing regularly by 0.04, and values after f(5) are also increasing by the same amount. If the pattern were followed, the value of f(5) would be 4.000.
Q5
Does the pattern still indicate the same limit as x approaches 5? How close do the new values actually come to the limit?
The pattern indicates the same limit as before. The values of f(x) now come within 0.004 of 4.000.
Q6
Does the pattern still indicate the same limit as x approaches 5? How close do these new values actually come to the limit?
Yes, these values are even closer, within 0.0004 of 4.0000.
Q7
Approximately how close x must be to 5 so that the value of f(x) will be within 0.01 of the limit?

If x is within about 0.02 of 5, f(x) is within 0.01 of 4. (More precisely, x must be within 0.025 of 5.).
Q8
Approximately how close x must be to 5 so that the value of f(x) will be within 0.001 of the limit?
If x is within about 0.002 of 5, f(x) is within 0.001 of 4. (More precisely, x must be within 0.0025 of 5.).
Limits with Delta and Epsilon

This activity introduces the formal definition of a limit and reinforces it by asking the student to choose values of L (to determine the limit itself) and to manipulate values of ( and ( (so that the definition actually makes sense).
By manipulating the sliders for ( and (, students get a much clearer sense of the meanings of these two values, and a clearer understanding of the formal definition of a limit.

Q1
Use the Move x -> c action button to move x to the exact value of c. What happens? What’s the value of f(x)?

The point x on the axis moves to c. The red point on the graph and the connecting segments disappear. The value of the function is undefined.
Q2
What do you think is the limit of the value of the function when x is close to c?

When x is very close to c, the value of f(x) is very close to 4, so the limit is 4.
Q3
Drag x back and forth. For what values of x is the value of the function within ( of L? (In other words, for what values of x does the horizontal red segment touch the green portion of the y-axis?)

When x is between 4.5 and 5.5, the value of the function is within ( of L .
Q4
What value of ( is required to keep f(x) within ( of L?

A value of 0.5 keeps f(x) within ( of L .
Q5
What value of ( is now required to keep f(x) within ( of L?

A value of approximately 0.35 keeps f(x) within ( of L.
Q6
Do you think you can find an appropriate value of ( , even if ( is very small? Justify your answer.

Yes. No matter how small ( is, we can just make ( smaller as needed.
Q7
Can you adjust ( to keep f(x) within ( of L? What value of ( must you use?

Yes, a value of ( that’s less than 2.0 will keep f(x) within ( of L.
Q8
What happens when you try to adjust ( to keep f(x) within ( of L? Does it help to use a smaller value of (? Can you make this work by choosing a different value of L?

Now there’s no way to choose an appropriate (. Any value we pick allows the value of f(x) to be taken from either of the two branches of the graph, both of which are outside the ( range.

Q9
Are there any values of L and ( that keep f(x) within ( of L? If so, what values did you use? If not, why not?

No, there’s no other value of L that will work, because the function takes a jump from 2 to 4 at x=4, and any limit cannot be close to both of those values.


























  •  © 2003 KCP Technologies, Inc.
Introducing Calculus Topics with Sketchpad

  •  © 2003 KCP Technologies, Inc.
Introducing Calculus Topics with Sketchpad
Introducing Calculus Topics with Sketchpad
© 2003 KCP Technologies, Inc.•  


_1118132619.unknown

_1118132870.unknown

_1118132982.unknown

_1118133002.unknown

_1118132975.unknown

_1118132669.unknown

_1118132724.unknown

_1118130314.unknown

_1118132449.unknown

_1118132480.unknown

_1117880688.unknown

